Archive

Archive for the ‘Portfolio Construction’ Category

Weekend Reading: F-Squared

December 7, 2013 7 comments

Mebane Faber posted another interesting blog post: Building a Simple Sector Rotation on Momentum and Trend that caught my interest. Today I want to show how you can test such strategy using the Systematic Investor Toolbox:

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)

	#*****************************************************************
	# Load historical data
	#******************************************************************    
	load.packages('quantmod')		
	
	data = new.env()
	# load historical market returns
	temp = get.fama.french.data('F-F_Research_Data_Factors', periodicity = '',download = T, clean = T)
		ret = cbind(temp[[1]]$Mkt.RF + temp[[1]]$RF, temp[[1]]$RF)
		price = bt.apply.matrix(ret / 100, function(x) cumprod(1 + x))
	data$SPY = make.stock.xts( price$Mkt.RF )
	data$SHY = make.stock.xts( price$RF )
	
	# load historical sector returns
	temp = get.fama.french.data('10_Industry_Portfolios', periodicity = '',download = T, clean = T)		
		ret = temp[[1]]
		price = bt.apply.matrix(ret[,1:9] / 100, function(x) cumprod(1 + x))
	for(n in names(price)) data[[n]] = make.stock.xts( price[,n] )
	
	# align dates
	data$symbolnames = c(names(price), 'SHY', 'SPY')
	bt.prep(data, align='remove.na', dates='2000::')

	# back-test dates
	bt.dates = '2001:04::'

	#*****************************************************************
	# Setup
	#****************************************************************** 	
	prices = data$prices  
	n = ncol(data$prices)
		
	models = list()
	
	#*****************************************************************
	# Benchmark Strategies
	#****************************************************************** 			
	data$weight[] = NA
		data$weight$SPY[1] = 1
	models$SPY = bt.run.share(data, clean.signal=F, dates=bt.dates)
			
	weight = prices
		weight$SPY = NA
		weight$SHY = NA
	
	data$weight[] = NA
		data$weight[] = ntop(weight[], n)
	models$EW = bt.run.share(data, clean.signal=F, dates=bt.dates)
	
	#*****************************************************************
	# Code Strategies
	# http://www.mebanefaber.com/2013/12/04/square-root-of-f-squared/
	#****************************************************************** 			
	sma = bt.apply.matrix(prices, SMA, 10)
	
	# create position score
	position.score = sma
	position.score[ prices < sma ] = NA
		position.score$SHY = NA	
		position.score$SPY = NA	
	
	# equal weight allocation
	weight = ntop(position.score[], n)	
	
	# number of invested funds
	n.selected = rowSums(weight != 0)
	
	# cash logic
	weight$SHY[n.selected == 0,] = 1
	
	weight[n.selected == 1,] = 0.25 * weight[n.selected == 1,]
	weight$SHY[n.selected == 1,] = 0.75
	
	weight[n.selected == 2,] = 0.5 * weight[n.selected == 2,]
	weight$SHY[n.selected == 2,] = 0.5
	
	weight[n.selected == 3,] = 0.75 * weight[n.selected == 3,]
	weight$SHY[n.selected == 3,] = 0.25
	
	# cbind(round(100*weight,0), n.selected)	
	
	data$weight[] = NA
		data$weight[] = weight
	models$strategy1 = bt.run.share(data, clean.signal=F, dates=bt.dates)	
	
	#*****************************************************************
	# Create Report
	#******************************************************************       	
	strategy.performance.snapshoot(models, one.page = T)

plot1

Mebane thank you very much for sharing your great ideas. I would encourage readers to play with this strategy and report back.

Please note that I back-tested the strategy using the monthly observations. The strategy’s draw-down is around 17% using monthly data. If we switch to the daily data, the strategy’s draw-down goes to around 22%. There was one really bad month in 2002.

To view the complete source code for this example, please have a look at the bt.mebanefaber.f.squared.test() function in bt.test.r at github.

Averaged Input Assumptions and Momentum

December 5, 2013 5 comments

Today I want to share another interesting idea contributed by Pierre Chretien. Pierre suggested using Averaged Input Assumptions and Momentum to create reasonably quiet strategy. The averaging techniques are used to avoid over-fitting any particular frequency.

To create Averaged Input Assumptions we combine returns over different look-back periods, giving more weight to the recent returns, to form overall Input Assumptions.

create.ia.averaged <- function(lookbacks, n.lag) {
	lookbacks = lookbacks
	n.lag = n.lag

	function(hist.returns, index=1:ncol(hist.returns), hist.all)
	{	
		nperiods = nrow(hist.returns)
		
		temp = c()
		for (n.lookback in lookbacks) 
			temp = rbind(temp, hist.returns[(nperiods - n.lookback - n.lag + 1):(nperiods - n.lag), ])
		create.ia(temp, index, hist.all)
	}	
}

To create Averaged Momentum we take a look-back weighted avaerage of momentums computed over different look-back periods.

momentum.averaged <- function(prices, 
	lookbacks = c(20,60,120,250) ,	# length of momentum look back
	n.lag = 3
) {
	momentum = 0 * prices
	for (n.lookback in lookbacks) {
		part.mom = mlag(prices, n.lag) / mlag(prices, n.lookback + n.lag) - 1
		momentum = momentum + 252 / n.lookback * part.mom
	}
	momentum / len(lookbacks)
}

Next let’s compare using historical Input Assumptions vs Averaged Input Assumptions and Momentum vs Averaged Momentum. I will consider Absolute Momentum (not cross sectional), for more information about relative and absolute momentum, please see

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)
 
	#*****************************************************************
	# Load historical data
	#****************************************************************** 
	load.packages('quantmod')
		
	# 10 funds
	tickers = spl('Us.Eq = VTI + VTSMX,
	Eurpoe.Eq = IEV + FIEUX,
	Japan.Eq = EWJ + FJPNX,
	Emer.Eq = EEM + VEIEX,
	Re = RWX + VNQ + VGSIX,		
	Com = DBC + QRAAX,
	Gold = GLD + SCGDX,
	Long.Tr = TLT + VUSTX,
	Mid.Tr = IEF + VFITX,
	Short.Tr = SHY + VFISX') 
	
	start.date = 1998
	
	dates = paste(start.date,'::',sep='') 
	
	data <- new.env()
	getSymbols.extra(tickers, src = 'yahoo', from = '1980-01-01', env = data, set.symbolnames = T, auto.assign = T)
		for(i in data$symbolnames) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
	bt.prep(data, align='keep.all', dates=paste(start.date-2,':12::',sep=''), fill.gaps = T)

	#*****************************************************************
	# Setup
	#****************************************************************** 		
	prices = data$prices   
		n = ncol(prices)
		nperiods = nrow(prices)
		
	periodicity = 'months'
	period.ends = endpoints(prices, periodicity)
		period.ends = period.ends[period.ends > 0]
		
	max.product.exposure = 0.6	
	
	#*****************************************************************
	# Input Assumptions
	#****************************************************************** 	
	lookback.len = 40
	create.ia.fn = create.ia
	
	# input assumptions are averaged on 20, 40, 60 days using 1 day lag
	ia.array = c(20,40,60)
	avg.create.ia.fn = create.ia.averaged(ia.array, 1)

	#*****************************************************************
	# Momentum
	#****************************************************************** 	
	universe = prices > 0
	
	mom.lookback.len = 120	
	momentum = prices / mlag(prices, mom.lookback.len) - 1
	mom.universe = ifna(momentum > 0, F)
	
	# momentum is averaged on 20,60,120,250 days using 3 day lag
	mom.array = c(20,60,120,250)	
	avg.momentum = momentum.averaged(prices, mom.array, 3)
	avgmom.universe = ifna(avg.momentum > 0, F)

	#*****************************************************************
	# Algos
	#****************************************************************** 	
	min.risk.fns = list(
		EW = equal.weight.portfolio,
		MV = min.var.portfolio,
		MCE = min.corr.excel.portfolio,
				
		MV.RSO = rso.portfolio(min.var.portfolio, 3, 100, const.ub = max.product.exposure),
		MCE.RSO = rso.portfolio(min.corr.excel.portfolio, 3, 100, const.ub = max.product.exposure)
	)

	#*****************************************************************
	# Code Strategies
	#****************************************************************** 	
make.strategy.custom <- function(name, create.ia.fn, lookback.len, universe, env) {
	obj = portfolio.allocation.helper(data$prices, 
		periodicity = periodicity,
		universe = universe,
		lookback.len = lookback.len,
		create.ia.fn = create.ia.fn,
		const.ub = max.product.exposure,
		min.risk.fns = min.risk.fns,
		adjust2positive.definite = F
	)
	env[[name]] = create.strategies(obj, data, prefix=paste(name,'.',sep=''))$models
}


	models <- new.env()	
	make.strategy.custom('ia.none'        , create.ia.fn    , lookback.len, universe       , models)
	make.strategy.custom('ia.mom'         , create.ia.fn    , lookback.len, mom.universe   , models)
	make.strategy.custom('ia.avg_mom'     , create.ia.fn    , lookback.len, avgmom.universe, models)
	make.strategy.custom('avg_ia.none'    , avg.create.ia.fn, 252         , universe       , models)
	make.strategy.custom('avg_ia.mom'     , avg.create.ia.fn, 252         , mom.universe   , models)
	make.strategy.custom('avg_ia.avg_mom' , avg.create.ia.fn, 252         , avgmom.universe, models)
	
	#*****************************************************************
	# Create Report
	#*****************************************************************		
strategy.snapshot.custom <- function(models, n = 0, title = NULL) {
	if (n > 0)
		models = models[ as.vector(matrix(1:len(models),ncol=n, byrow=T)) ]	

	layout(1:3)	
	plotbt(models, plotX = T, log = 'y', LeftMargin = 3, main = title)
		mtext('Cumulative Performance', side = 2, line = 1)
	plotbt.strategy.sidebyside(models)
	barplot.with.labels(sapply(models, compute.turnover, data), 'Average Annual Portfolio Turnover', T)	
}

	# basic vs basic + momentum => momentum filter has better results
	models.final = c(models$ia.none, models$ia.mom)
	strategy.snapshot.custom(models.final, len(min.risk.fns), 'Momentum Filter')

	# basic vs basic + avg ia => averaged ia reduce turnover
	models.final = c(models$ia.none, models$avg_ia.none)
	strategy.snapshot.custom(models.final, len(min.risk.fns), 'Averaged Input Assumptions')

	# basic + momentum vs basic + avg.momentum => mixed results for averaged momentum
	models.final = c(models$ia.mom, models$ia.avg_mom)
	strategy.snapshot.custom(models.final, len(min.risk.fns), 'Averaged Momentum')

	# basic + momentum vs avg ia + avg.momentum
	models.final = c(models$ia.mom, models$avg_ia.avg_mom)
	strategy.snapshot.custom(models.final, len(min.risk.fns), 'Averaged vs Base')	

Above, I compared results for the following 4 cases:
1. Adding Momentum filter: all algos perfrom better
plot3

2. Input Assumptions vs Averaged Input Assumptions: returns are very similar, but using Averaged Input Assumptions helps reduce portfolio turnover.
plot2

3. Momentum vs Averaged Momentum: returns are very similar, but using Averaged Momentum increases portfolio turnover.
plot1

4. historical Input Assumptions + Momentum vs Averaged Input Assumptions + Averaged Momentum: results are mixed, no consistent advantage of using Averaged methods
plot4

Overall, the Averaged methods is a very interesting idea and I hope you will experiemtn with it and share your findings, like Pierre. Pierre, again thank you very much for sharing.

The full source code and example for the bt.averaged.test() function is available in bt.test.r at github.

Weekend Reading: Market Neutral

November 2, 2013 2 comments

I recently came across a very interesting idea at the The Problem with Market Neutral (and an Answer) post by Mebane Faber. Today I want to show how you can test such strategy using the Systematic Investor Toolbox:

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)

	#*****************************************************************
	# Load historical data
	#******************************************************************    
	load.packages('quantmod')		
	
	data = new.env()
		
	# load historical market returns
	temp = get.fama.french.data('F-F_Research_Data_Factors', periodicity = '',download = T, clean = T)
		ret = temp[[1]]$Mkt.RF + temp[[1]]$RF
		price = bt.apply.matrix(ret / 100, function(x) cumprod(1 + x))
	data$SPY = make.stock.xts( price )
	
	# load historical momentum returns
	temp = get.fama.french.data('10_Portfolios_Prior_12_2', periodicity = '',download = T, clean = T)		
		ret = temp[[1]]
		price = bt.apply.matrix(ret / 100, function(x) cumprod(1 + x))
	data$HI.MO = make.stock.xts( price$High )
	data$LO.MO = make.stock.xts( price$Low )
	
	# align dates
	bt.prep(data, align='remove.na')
	
	#*****************************************************************
	# Code Strategies
	#*****************************************************************	
	models = list()
	
	data$weight[] = NA
		data$weight$SPY[] = 1
	models$SPY = bt.run.share(data, clean.signal=T)
	
	data$weight[] = NA
		data$weight$HI.MO[] = 1
	models$HI.MO = bt.run.share(data, clean.signal=T)
	
	data$weight[] = NA
		data$weight$LO.MO[] = 1
	models$LO.MO = bt.run.share(data, clean.signal=T)
	
	data$weight[] = NA
		data$weight$HI.MO[] = 1
		data$weight$LO.MO[] = -1
	models$MKT.NEUTRAL = bt.run.share(data, clean.signal=F)

	#*****************************************************************
	# Modified MN
	# The modified strategy below starts 100% market neutral, and depending on the drawdown bucket 
	# will reduce the shorts all the way to zero once the market has declined by 50%
	# (in 20% steps for every 10% decline in stocks)
	#*****************************************************************	
	market.drawdown = -100 * compute.drawdown(data$prices$SPY)
		market.drawdown.10.step = 10 * floor(market.drawdown / 10)
		short.allocation = 100 - market.drawdown.10.step * 2
		short.allocation[ short.allocation < 0 ] = 0
				
	data$weight[] = NA
		data$weight$HI.MO[] = 1
		data$weight$LO.MO[] = -1 * short.allocation / 100
	models$Modified.MN = bt.run.share(data, clean.signal=F)
	
	#*****************************************************************
	# Create Report
	#*****************************************************************
	strategy.performance.snapshoot(models, T)

plot1

Mebane thank you very much for sharing this great observation and great strategy that works! I would encourage readers to experiment with idea and share their findings.

If you want to concentrate on the long side, one idea that comes to mind is to start not fully invested say at 90% allocation, and once the market hits say 20% draw-down to invest 100% in expectation of quick recovery.

To view the complete source code for this example, please have a look at the bt.mebanefaber.modified.mn.test() function in bt.test.r at github.

Updates for Proportional Minimum Variance and Adaptive Shrinkage methods

October 29, 2013 1 comment

I create supporting pages for two projects I have collaborated with David Varadi in 2013:

Please check the links to get more info, including supporting blog posts, back-tests, R code to reproduce the back-tests, and more to come in the near future.

I and David appreciate your feedback and comments.

7Twelve Back-test

August 15, 2013 3 comments

I recently came across the The 7Twelve Portfolio strategy. I like the catchy name and the strategy report, “An Introduction to 7Twelve.” Following is some additional info about the The 7Twelve Portfolio strategy that I found useful:

Today I want to show how to back-test the The 7Twelve Portfolio strategy using the Systematic Investor Toolbox.

Let’s start by loading historical data

###############################################################################
# Load Systematic Investor Toolbox (SIT)
# http://systematicinvestor.wordpress.com/systematic-investor-toolbox/
###############################################################################
setInternet2(TRUE)
con = gzcon(url('http://www.systematicportfolio.com/sit.gz', 'rb'))
    source(con)
close(con)
   
    #*****************************************************************
    # Load historical data
    #******************************************************************
    load.packages('quantmod')  

    tickers = spl('VFINX,VIMSX,NAESX,VDMIX,VEIEX,VGSIX,FNARX,QRAAX,VBMFX,VIPSX,OIBAX,BIL') 
	
    data <- new.env()
    getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign = T)

    #--------------------------------   
    # BIL     30-May-2007 
    # load 3-Month Treasury Bill from FRED
    TB3M = quantmod::getSymbols('DTB3', src='FRED', auto.assign = FALSE)		
    TB3M[] = ifna.prev(TB3M)	
    TB3M = processTBill(TB3M, timetomaturity = 1/4, 261)	
    #--------------------------------       	

    # extend	
    data$BIL = extend.data(data$BIL, TB3M, scale=T)	
	
    for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)		
				
    bt.prep(data, align='remove.na')

Next, let’s make the The 7Twelve Portfolio strategy with annual/ quarterly and monthly rebalancing.

    #*****************************************************************
    # Code Strategies
    #****************************************************************** 
    models = list()
	
    # Vanguard 500 Index Investor (VFINX)
    data$weight[] = NA
        data$weight$VFINX[] = 1
    models$VFINX  = bt.run.share(data, clean.signal=F) 
		
    #*****************************************************************
    # Code Strategies
    #****************************************************************** 	
    obj = portfolio.allocation.helper(data$prices, periodicity = 'years',
        min.risk.fns = list(EW=equal.weight.portfolio)
    ) 	
    models$year = create.strategies(obj, data)$models$EW

    obj = portfolio.allocation.helper(data$prices, periodicity = 'quarters',
        min.risk.fns = list(EW=equal.weight.portfolio)
    ) 	
    models$quarter = create.strategies(obj, data)$models$EW
		
    obj = portfolio.allocation.helper(data$prices, periodicity = 'months',
        min.risk.fns = list(EW=equal.weight.portfolio)
    ) 	
    models$month = create.strategies(obj, data)$models$EW
	
    #*****************************************************************
    # Create Report
    #****************************************************************** 
    strategy.performance.snapshoot(models, T)

plot1

The strategy does better than the Vanguard 500 Index benchmark, but still suffers a huge draw-down in 2008-2009 period.

How would you make it a better strategy? Please share your ideas.

To view the complete source code for this example, please have a look at the bt.7twelve.strategy.test() function in bt.test.r at github.

Follow

Get every new post delivered to your Inbox.

Join 208 other followers